
Introduction to naivebayes package

Michal Majka

March 7, 2020

1 Introduction

The naivebayes package provides an efficient implementation of the popular Naïve Bayes
classifier. It was developed and is now maintained based on three principles: it should be
efficient, user friendly and written in Base R. The last implies no dependencies, however, it
neither denies nor interferes with the first as many functions from the Base R distribution
use highly efficient routines programmed in lower level languages, such as C or FORTRAN. In
fact, the naivebayes package utilizes only such functions for resource-intensive calculations.
This vignette should make the implementation of the general naive_bayes() function more
transparent and give an overview over its functionalities.

2 Installation

Just like many other R packages, the naivebayes can be installed from the CRAN repository
by simply typing into the console the following line:

install.packages("naivebayes")

An alternative way of obtaining the package is first downloading the package source
from https://CRAN.R-project.org/package=naivebayes, specifying the location of the
file and running in the console:

path_to_tar.gz file <- " "

install.packages(path_to_tar.gz, repos = NULL, type = "source")

The full source code can be viewed either on the official GitHub CRAN repository: https:
//github.com/cran/naivebayes or on the development repository: https://github.com/
majkamichal/naivebayes. After successful installation, the package can be used with:

library(naivebayes)

3 Main functions

The general function naive_bayes() detects the class of each feature in the dataset and,
depending on the user choices, assumes possibly different distribution for each feature. It
currently supports following class conditional distributions:

1

https://CRAN.R-project.org/package=naivebayes
https://github.com/cran/naivebayes
https://github.com/cran/naivebayes
https://github.com/majkamichal/naivebayes
https://github.com/majkamichal/naivebayes

• categorical distribution for discrete features

• Poisson distribution for non-negative integers

• Gaussian distribution for continuous features

• non-parametrically estimated densities via Kernel Density Estimation for continuous
features

In addition to that, specialized Naive Bayes classifiers are available and are listed below.
They are implemented based on the linear algebra operations which makes them efficient
on the dense matrices. They can also take advantage of sparse matrices to furthermore boost
the performance.

• Bernoulli Naive Bayes via bernoulli_naive_bayes()

• Multinomial Naive Bayes via multinomial_naive_bayes()

• Poisson Naive Bayes via poisson_naive_bayes()

• Gaussian Naive Bayes via gaussian_naive_bayes()

• Non-Parametric Naive Bayes via nonparametric_naive_bayes()

4 Naïve Bayes Model

The Naïve Bayes is a family of probabilistic models that utilize Bayes’ theorem under the
assumption of conditional independence between the features to predict the class label for a
given problem instance. This section introduces the Naïve Bayes framework in a somewhat
formal way.

Let us assume that a single problem instance x = (x1, x2, ..., xd) is given. It consists
of d values, each being an outcome of a measurement of a different characteristic Xi. For
instance, for d = 3, the characteristics X1, X2 and X3 may represent age, yearly income and
education level, respectively, and x1, x2, x3 are their measurements of a particular person.
Furthermore, given X = x, which is a compact notation for (X1 = x1, ..., Xd = xd), we
are interested in predicting another characteristic Y, which can take on K possible values
denoted by (C1, ..., CK). In other words, we have a multi-class classification problem with K
specifying the number of classes. If K = 2 the problem reduces to the binary classification.
The Xis are usually referred to as "features" or "independent variables" and Y as "response"
or "dependent variable". In the following Xis are assumed to be random variables.

In the Naive Bayes framework this classification problem is tackled first by applying the
Bayes’ theorem to the class specific conditional probabilities P(Y = Ck|X = x) and hence
decomposing them into the product of the likelihood and the prior scaled by the likelihood
of the data:

P(Y = Ck|X = x) =
P(Y = Ck)P(X = x |Y = Ck)

P(X = x)
. (1)

Since the random variables X = (X1, X2, ..., Xd) are (naïvely) assumed to be conditionally
independent, given the class label Ck, the likelihood P(X = x|Y = Ck) on the right-hand
side can be simply re-written as

2

P(Y = Ck|X = x) =
P(Y = Ck) ∏d

i=1 P(Xi = xi|Y = Ck)

P(X1 = x1, ..., Xd = xd)
. (2)

Since the denominator P(X1 = x1, ..., Xd = xd) is a constant with respect to the class label
Ck, the conditional probability P(Y = Ck|X = x) is proportional to the numerator:

P(Y = Ck|X = x) ∝ P(Y = Ck)
d

∏
i=1

P(Xi = xi|Y = Ck) (3)

In order to avoid a numerical underflow (when d >> 0), these calculations are performed
on the log scale:

log P(Y = Ck|X = x) ∝ log P(Y = CK) +
d

∑
i=1

log P(Xi = xi|Y = Ck). (4)

Lastly, the class with the highest log-posterior probability is chosen to be the prediction:

Ĉ = arg max
k∈{1,...,K}

(
log P(Y = CK) +

d

∑
i=1

log P(Xi = xi|Y = Ck)

)
, (5)

which is equivalent to predict(..., type = "class").

If instead, the class conditional probabilities P(Y = Ck|X = x) are of the main inter-
est, which, in turn, is equivalent to predict(..., type = "prob"), then the log-posterior
probabilities in (4) are transformed back to the original space and then normalized.

4.1 Prior distribution

Since the response variable Y can take on K distinct values denoted as (C1, ..., CK), each prior
probability P(Y = Ck) in (3) can be interpreted as the probability of seeing the label Ck

and they are modelled, by default, with a Categorical distribution in the naivebayes pack-
age. The parameters are estimated with MLE and thus the prior probabilities correspond
to proportions of classes in the sample ((number of samples in the class) / (total number
of samples)). Prior probabilities can be also specified using the parameter prior. For in-
stance, if there are three classes (K = 3) and we believe that they are equally likely then we
may want to assign a uniform prior simply with naive_bayes(..., prior = c(1/3, 1/3,
1/3). Note that the manually specified probabilities have to follow the order of factor levels.

4.2 Available class conditional distributions

Each individual feature Xi can take a value from a finite/infinte set of m individually iden-
tified items (discrete feature) or it can be any real valued number (continuous feature). Dis-
crete features are identified in naive_bayes() as variables of class "character", "factor", "log-
ical" and "integer" when naive_bayes(..., usepoisson = TRUE). On the other hand, con-
tinuous features are identified as variables with the class "numeric". Depending on the kind
of the feature Xi, the naivebayes() function uses a different probability distribution for
modelling of the class conditional probability P(Xi = xi|Y = Ck). In this subsection, avail-
able class conditional distributions are first introduced and then it is elaborated on how they
are assigned to the features.

3

4.2.1 Categorical distribution

If Xi is discrete feature which takes on M possible values denoted byXi = {item1, ..., itemM},
then the Categorical distribution is assumed:

P(Xi = l |Y = Ck) = pikl , (6)

where l ∈ Xi, pikl > 0 and ∑j∈Xi
pikj = 1. This mathematical formalism can be trans-

lated into plain English as follows: given the class label Ck, the probability that the i-th
feature takes on the l-th value is non-negative and the sum of M such probabilities is 1. The
Bernoulli distribution is the special case for M = 2. It is important to note tha the logical
(TRUE/FALSE) vectors are internally coerced to character ("TRUE"/"FALSE") and hence are
assumed to be discrete features. Also, if the feature Xi takes on 0 and 1 values only and is
represented in R as a "numeric" then the Gaussian distribution is assumed by default.

4.2.2 Poisson distribution

If Xi is a non-negative integer feature and explicitly requested via naive_bayes(..., use-
poisson = TRUE) then the Poisson distribution is assumed:

P(Xi = v|Y = Ck) =
λv

ike−λik

v!
,

where λik > 0 and v ∈ {0, 1, 2, ...}. If this applies to all features, then the model can be
called a "Poisson Naive Bayes".

4.2.3 Gaussian distribution

If Xi is a continuous feature then, by default, the Gaussian distribution is assumed:

P(Xi = v|Y = Ck) =
1√

2πσ2
ik

exp

(
− (v− µik)

2

2σ2
ik

)
,

where µik and σ2
ik are the class conditional mean and variance. If this applies to all fea-

tures, then the model can be called a "Gaussian Naive Bayes".

4.2.4 Kernel distribution

If Xi is continuous, instead of the Gaussian distribution, a kernel density estimation (KDE)
can be alternatively used to obtain a non-parametric representation of the conditional prob-
ability density function. It can be requested via naive_bayes(..., usekernel = TRUE). If
this applies to all features then the model can be called a "Non-parametric Naive Bayes".

4.3 Assignment of distributions to the features

The class "numeric" contains "double" (double precision floating point numbers) and "inte-
ger". Depending on the parameters usekernel and usepoisson different class conditional
distributions are applied to columns in the dataset with the class "numeric":

• If usekernel=FALSE and poisson=FALSE then Gaussian distribution is applied to each
"numeric" variable ("numeric"&"integer" or "numeric"&"double")

4

• If usekernel=TRUE and poisson=FALSE then kernel density estimation (KDE) is ap-
plied to each "numeric" variable ("numeric"&"integer" or "numeric"&"double")

• If usekernel=FALSE and poisson=TRUE then Gaussian distribution is applied to each
"double" vector and Poisson to each "integer" vector:

– Gaussian: "numeric"&"double"

– Poisson: "numeric"&"integer"

• If usekernel=TRUE and poisson=TRUE then kernel density estimation (KDE) is applied
to each "double" vector and Poisson to each "integer" vector:

– KDE: "numeric"&"double"

– Poisson: "numeric"&"integer"

By default usekernel=FALSE and poisson=FALSE, thus Gaussian is applied to each nu-
meric variable. On the other hand, "character", "factor" and "logical" variables are assigned
to the Categorical distribution with Bernoulli being its special case.

5 Parameter estimation

Let us assume that we have some training set (y(j), x(j)) for j ∈ {1, ..., n}, where each y(j) ∈
{C1, ..., Ck} and x(j) = (x(j)

1 , ..., x(j)
d). All observations are assumed to be independent and

based on this sample we want to fit the Naive Bayes model, which requires parameters of
class conditional distributions P(Xi = xi|Y = Ck) to be estimated. Specifying the prior
distribution was already discussed in the subsection 4.

5.1 Categorical distribution

Every class conditional Categorical distribution is estimated from the data with Maximum-
Likelihood method, by default. However, when the discrete feature Xi takes on a large
number of possible values relative to the sample size, some combinations of its values and
class labels may not be present, which inevitably leads to zero probabilities, when using
Maximum-Likelihood. In order to avoid the zero-frequency problem, usually, a small amount
(pseudo-count) is added to the count for every feature value - class label combination. This
is known as additive smoothing and can be easily accomplished by setting the parameter
laplace to any positive value. For instance: naive_bayes(..., laplace = 1) smooths
each discrete feature by adding pseudocount 1 for every feature value-class label combina-
tion. The parameter responsible for controlling the additive smoothing is called laplace

because it is the most popular special case when one pseudo-count is added. Interestingly,
by applying the additive smoothing, we leave the Maximum-Likelihood world and enter
the Bayesian estimation realm. It is important to note that the laplace parameter is global,
i.e. it is applied to all discrete features and also non-negative integer features when they are
modelled with the Poisson distribution.

5

5.1.1 Maximum Likelihood

When i-th feature takes values inXi = {item1, ..., itemM}, then the corresponding Maximum-
Likelihood estimates are given by:

p̂ikl =
∑n

j=1 1(y(j) = Ck and x(j)
i = l)

∑n
j=1 1(y(j) = Ck)

=
cikl

∑j∈Xi
cikj

where l ∈ Xi and 1 is an indicator function that is 1 when the condition is satisfied and is
0 otherwise. Thus the Maximum-Likelihood yields very natural estimates: it is a ratio of the
number of time the class label Ck is observed together with the l-th value of the i-th feature
to the the number of times the class label Ck is observed.

5.1.2 Additive Smoothing and Bayesian estimation

Applying the additive smoothing is commonly thought of as means of avoiding zero proba-
bilities - adding a pseudo-count α > 0 to the frequency of each item (feature value) changes
the expected probabilities and the resulting estimates are guaranteed to be non-zero. They
are given by:

p̂ikl =
cikl + α

∑j∈Xi
cikj + Mα

, l ∈ Xi = {item1, ..., itemM},

where cikl is, again, the frequency of the l-th item for the i-th feature and the k-th class,
and M is the number of different items. It can be easily seen that when the parameter α = 0
then each { p̂ik1, p̂ik2, ..., p̂ikM} coincides with the Maximum-Likelihood. Whereas for α→ ∞,
they are shrunk towards the uniform probabilities { 1

M , 1
M , ..., 1

M}.
In the Bayesian realm, these estimates correspond to the expected value of the posterior

distribution1, when the symmetric Dirichlet distribution with the parameter α = (α, ..., α) is
chosen as a prior. The latter is parametrised with M equal values α which, in this context, can
be interpreted as having observed α additional counts of each item and then incorporating
them into the estimation process. Thus, adding pseudo-counts allows to explicitly include
the prior information into the parameter estimation that the estimates cannot be zero. Also,
since the same amount is added to each item’s count, no parameter is favoured over any
other. The parameter α is usually chosen to be 1 because in such case the symmetric Dirichlet
prior is equivalent to the uniform distribution and for bigger number of observations in the
data such (uniform) prior has small effect on the estimates. The other common value for α is
0.5, which corresponds to the popular (non-informative) Jeffreys prior.

5.2 Poisson distribution

In the current implementation, the parameters of class conditional Poisson distributions,
similarly as in case of the categorical distribution, can be estimated using either Maximum-
Likelihood method or the Bayesian approach by adding pseudo-counts to the data.

1Details on the derivation of the posterior: https://www.youtube.com/watch?v=UDVNyAp3T38 - this resource
was chosen because it is very accessible and provides great explanations.

6

https://www.youtube.com/watch?v=UDVNyAp3T38

5.2.1 Maximum Likelihood

The classical maximum likelihood parameter estimates for the Poisson lambda are simply
sample averages. This means that each class conditional parameter λik is estimated via ap-
plying following algorithm:

λ̂ik =
∑n

j=1 x(j)
i 1(y(j) = Ck)

∑n
j=1 1(y(j) = Ck)

=
Tik
nk

.

5.2.2 Bayesian estimation via pseudo-counts

When the sample is segmented according to different classes Ck, it may happen that in some
sub-samples only zero counts are to be found and in such case Maximum-Likelihood es-
timates yields zero estimates. In such case, pseudo-counts can be introduced via global
laplace parameter to add the Bayesian flavour to the parameter estimation and to alleviate
zero-estimates problem in the same time.

Analogously to the Maximum-Likelihood estimation, the values of the i-th feature are
first segmented according to the k-th class Ck, which results in a sub-sample with a possibly
different number of data points denoted by nk = ∑n

j=1 1(y(j) = Ck) and the sub-total Tik =

∑n
j=1 x(j)

i 1(y(j) = Ck). Then a pseudo-count α > 0 is added to the sub-total and the parameter
λik is estimated via:

λ̂ik =
Tik + α

nk

The estimate λ̂ik could be considered to coincide with the expected value of posterior
distribution given by Gamma(Tik + α, nk), when the improper (degenerate) Gamma distri-
bution with shape parameter α > 0 and rate β → 0 is chosen as a prior for the Poisson
likelihood. Adding pseudo-counts 1 and 0.5 (α = 1 and α = 0.5) corresponds to the estima-
tion using the uniform prior and Jeffreys prior, respectively.

5.3 Gaussian distribution

The parameters of each class conditional Gaussian distribution are estimated via Maximum-
Likelihood:

µ̂ik =
∑n

j=1 x(j)
i 1(y(j) = Ck)

∑n
j=1 1(y(j) = Ck)

σ̂2
ik =

∑n
j=1(x(j)

i − µ̂ik)
2 1(y(j) = Ck)[

∑n
j=1 1(y(j) = Ck)

]
− 1

5.4 Kernel distribution

The non-parametric estimate for the k-th class conditional probability density function can
be obtained using a kernel density estimation:

f̂hik
(x) =

1
nkhik

n

∑
j=1

K

(
x− x(j)

i
hik

)
1(y(j) = Ck),

7

where nk is number of samples in the k-th class, K(·) is a kernel function that defines the
shape of the density curve and hik is a class specific bandwidth that controls the smoothness.
The estimation is performed using built in R function stats::density(). In general, there
are 7 different smoothing kernels and 5 different bandwidth selectors available.

Table 1: Available smoothing kernels and bandwidth selectors in stats::density(...).
Kernels Bandwidth selectors

Gaussian nrd0 (Silverman’s rule-of-thumb)
Epanechnikov nrd (variation of the rule-of-thumb)
Rectangular ucv (unbiased cross-validation)
Triangular bcv (biased cross-validation)
Biweight SJ (Sheather & Jones method)
Cosine
Optcosine

The Gaussian smoothing kernel and Silverman’s rule-of-thumb are chosen by default.
Please see help(density) and help(bw.nrd0) for more details on available kernel functions
and bandwidth selectors.

6 General usage

library(naivebayes)

::: naivebayes 0.9.7 loaded

Simulate data

n <- 100

set.seed(1)

data <- data.frame(class = sample(c("classA", "classB"), n, TRUE),

bern = sample(LETTERS[1:2], n, TRUE),

cat = sample(letters[1:3], n, TRUE),

logical = sample(c(TRUE,FALSE), n, TRUE),

norm = rnorm(n),

count = rpois(n, lambda = c(5,15)))

train <- data[1:95,]

test <- data[96:100, -1]

General usage via formula interface

nb <- naive_bayes(class ~ ., train, usepoisson = TRUE)

summary(nb)

##

================================ Naive Bayes =================================

##

- Call: naive_bayes.formula(formula = class ~ ., data = train, usepoisson = TRUE)

- Laplace: 0

8

- Classes: 2

- Samples: 95

- Features: 5

- Conditional distributions:

- Bernoulli: 2

- Categorical: 1

- Poisson: 1

- Gaussian: 1

- Prior probabilities:

- classA: 0.5263

- classB: 0.4737

##

--

Classification

predict(nb, test, type = "class")

[1] classB classB classA classB classA

Levels: classA classB

Alternatively

nb %class% test

[1] classB classB classA classB classA

Levels: classA classB

Posterior probabilities

predict(nb, test, type = "prob")

classA classB

[1,] 0.4815380 0.5184620

[2,] 0.4192209 0.5807791

[3,] 0.6882270 0.3117730

[4,] 0.4794415 0.5205585

[5,] 0.5209152 0.4790848

Alternatively

nb %prob% test

classA classB

[1,] 0.4815380 0.5184620

[2,] 0.4192209 0.5807791

[3,] 0.6882270 0.3117730

[4,] 0.4794415 0.5205585

[5,] 0.5209152 0.4790848

Helper functions

Obtain first table

tables(nb, 1)

9

##

--

::: bern (Bernoulli)

--

##

bern classA classB

A 0.4400000 0.4888889

B 0.5600000 0.5111111

##

--

Get names of assigned class conditional distributions

get_cond_dist(nb)

bern cat logical norm count

"Bernoulli" "Categorical" "Bernoulli" "Gaussian" "Poisson"

Fit the Naive Bayes model based on 10 simulated predictors, each having 1mn observa-
tions, and then perform classification:

vars <- 10

rows <- 1000000

y <- sample(x = c("a", "b"), size = rows, replace = TRUE)

Discrete features

X1 <- as.data.frame(matrix(sample(letters[5:9], vars * rows, TRUE),

ncol = vars))

nb_cat <- naive_bayes(x = X1, y = y)

system.time(pred2 <- predict(nb_cat, X1))

user system elapsed

0.428 0.123 0.562

10

7 Appendix

7.1 Practical examples: parameter estimation

This is a practical subsection that is aimed mostly to the students who learn the Naive Bayes
model for the first time and are interested in the technical aspects of the model fitting.

7.1.1 Categorical distribution

In this example, the famous iris dataset is appended with a random categorical feature
"new" with 3 levels/categories and then the parameters are estimated using the Maximum-
Likelihood as well as the Bayesian estimation via adding pseudo-counts.

library(naivebayes)

Prepare data: --

data(iris)

iris2 <- iris

N <- nrow(iris2)

n_new_factors <- 3

factor_names <- paste0("level", 1:n_new_factors)

Add a new artificial features with three levels/categories:

level1 is very unlikely and has 0.5% chance to occur

level2 and level3 happen with probability 75% and 29.5%, respectively

set.seed(2)

iris2$new <- factor(sample(paste0("level", 1:n_new_factors),

prob = c(0.005, 0.7, 0.295),

size = 150,

replace = TRUE), levels = factor_names)

Define class and feature levels: -------------------------------------

Ck <- "setosa"

level1 <- "level1"

level2 <- "level2"

level3 <- "level3"

level1 did not show up in the sample but we know that it

has 0.5% probability to occur.

table(iris2$new)

For this reason level1 is also not available in any class sub-sample

table(iris2$new[iris$Species == Ck])

Parameter estimation: --

11

ML-estimates

ck_sub_sample <- table(iris2$new[iris$Species == Ck])

ck_mle_estim <- ck_sub_sample / sum(ck_sub_sample)

Bayesian estimation via symmetric Dirichlet prior with

concentration parameter 0.5.

(corresponds to the Jeffreys uninformative prior)

laplace <- 0.5 # Jeffreys prior / Dirichlet

with the concentration parameter 0.5

N1 <- sum(iris2$Species == Ck & iris2$new == level1) + laplace

N2 <- sum(iris2$Species == Ck & iris2$new == level2) + laplace

N3 <- sum(iris2$Species == Ck & iris2$new == level3) + laplace

N <- sum(iris2$Species == Ck) + laplace * n_new_factors

ck_bayes <- c(N1, N2, N3) / N

Compare estimates

rbind(ck_mle_estim, ck_bayes)

Bayesian estimate for level1 has positive probability

but is slightly overestimated. Compared to MLE,

estimates for level2 and level3 have been slightly shrunken.

In general, the higher value of laplace, the more resulting

distribution tends to the uniform distribution.

When laplace would be set to infinity

then the estimates for level1, level2 and level3

would be 1/3, 1/3 and 1/3.

comparison with estimates obtained with naive_bayes function:

nb_mle <- naive_bayes(Species ~ new, data = iris2)

nb_bayes <- naive_bayes(Species ~ new, data = iris2,

laplace = laplace)

MLE

rbind(ck_mle_estim,

"nb_mle" = tables(nb_mle, which = "new")[[1]][,Ck])

Bayes

rbind(ck_bayes,

"nb_bayes" = tables(nb_nb_jeffrey, which = "new")[[1]][,Ck])

12

7.1.2 Gaussian distribution

In this example, the famous iris dataset is again used to demonstrate the Maximum-Likelihood
estimation of the mean and variance in class conditional Gaussian distributions.

data(iris)

Xi <- "Petal.Width" # i-th feature

Ck <- "versicolor" # k-th class

Build class sub-sample for the i-th feature

Ck_Xi_subsample <- iris[iris$Species == Ck, Xi]

MLE

mle_norm <- cbind("mean" = mean(Ck_Xi_subsample),

"sd" = sd(Ck_Xi_subsample))

MLE in naive_bayes function

nb_mle <- naive_bayes(x = iris[Xi], y = iris[["Species"]])

rbind(mle_norm,

"nb_mle" = tables(nb_mle, which = Xi)[[Xi]][,Ck])

7.1.3 Kernel Density Estimation

In this example, kernel density estimation is used to estimate class conditional densities for
one variable from the iris dataset.

Prepare data: --

data(iris)

Xi <- "Sepal.Width" # i-th feature

C1 <- "setosa" # 1st class

C2 <- "virginica" # 2nd class

C3 <- "versicolor" # 3rd class

Build class sub-samples for the i-th feature

C1_Xi_subsample <- iris[iris$Species == C1, Xi]

C2_Xi_subsample <- iris[iris$Species == C2, Xi]

C3_Xi_subsample <- iris[iris$Species == C3, Xi]

Estimate class conditional densities for the i-th feature

dens1 <- density(C1_Xi_subsample)

dens2 <- density(C2_Xi_subsample)

dens3 <- density(C3_Xi_subsample)

Visualisation: ---

plot(dens2, main = "", col = "red")

lines(dens1, main = "", col = "blue")

13

lines(dens3, main = "", col = "black")

legend("topleft", legend = c(C1,C2,C3),

col = c("blue", "red", "black"),

lty = 1)

Compare to the naive_bayes: --

nb_kde <- naive_bayes(x = iris[Xi], y = iris[["Species"]],

usekernel = TRUE)

plot(nb_kde, prob = "conditional")

dens3

nb_kde$tables[[Xi]][[C3]]

tables(nb_kde, Xi)[[1]][[C3]]

Use custom bandwidth selector: ---------------------------------------

?bw.SJ

nb_kde_SJ_bw <- naive_bayes(x = iris[Xi], y = iris[["Species"]],

usekernel = TRUE, bw = "SJ")

plot(nb_kde, prob = "conditional")

Visualize all available kernels: -------------------------------------

kernels <- c("gaussian", "epanechnikov", "rectangular","triangular",

"biweight", "cosine", "optcosine")

iris3 <- iris

iris3$one <- 1

sapply(kernels, function (ith_kernel) {

nb <- naive_bayes(formula = Species ~ one, data = iris3,

usekernel = TRUE, kernel = ith_kernel)

plot(nb, arg.num = list(main = paste0("Kernel: ", ith_kernel),

col = "black"), legend = FALSE)

invisible()

})

7.1.4 Poisson distribution

In this example, parameter estimation for the class conditional Poisson features is demon-
strated.

Simulate data: ---

cols <- 2

rows <- 10

set.seed(11)

M <- matrix(rpois(rows * cols, lambda = c(0.1,1)), nrow = rows,

14

ncol = cols)

y <- factor(sample(paste0("class", LETTERS[1:2]), rows, TRUE))

colnames(M) <- paste0("Var", seq_len(ncol(M)))

Xi <- M[,"Var1", drop = FALSE]

MLE: ---

Estimate lambdas for each class

tapply(Xi, y, mean)

Compare with naive_bayes

pnb <- naive_bayes(x = Xi, y = y, usepoisson = TRUE)

tables(pnb,1)

Adding pseudo-counts via laplace parameter: --------------------------

laplace <- 1

Xi_pseudo <- Xi

Xi_pseudo[y == "classB",][1] <- Xi_pseudo[y == "classB",][1] + laplace

Xi_pseudo[y == "classA",][1] <- Xi_pseudo[y == "classA",][1] + laplace

Estimates

tapply(Xi_pseudo, y, mean)

Compare with naive_bayes

pnb <- naive_bayes(x = Xi, y = y, usepoisson = TRUE, laplace = laplace)

tables(pnb,1)

15

	Introduction
	Installation
	Main functions
	Naïve Bayes Model
	Prior distribution
	Available class conditional distributions
	Categorical distribution
	Poisson distribution
	Gaussian distribution
	Kernel distribution

	Assignment of distributions to the features

	Parameter estimation
	Categorical distribution
	Maximum Likelihood
	Additive Smoothing and Bayesian estimation

	Poisson distribution
	Maximum Likelihood
	Bayesian estimation via pseudo-counts

	Gaussian distribution
	Kernel distribution

	General usage
	Appendix
	Practical examples: parameter estimation
	Categorical distribution
	Gaussian distribution
	Kernel Density Estimation
	Poisson distribution

